Всё для новичков

Что такое Резистор

Самым используемым элементом в радиотехнических устройствах является - резистор (старое название - сопротивление). Основная характеристика резистора - сопротивление, измеряется в омах. Выпускается два вида резисторов: стабильные и общего назначения. Производство стабильных резисторов дорого и поэтому они используются в дорогой высокоточной аппаратуре. Мы же будем использовать резисторы общего назначения. Их сопротивление может изменятся в пределах 10% (зависит от ТКС). У обычных резисторов ТКС (Температурный Коэффициент Сопротивления) положителен то есть с увеличением температуры увеличивается сопротивление. Только у одного простого элемента он отрицателен: у углерода.
Одной из основных характеристик является рассеваемая мощность. Рассеваемая мощность это мощность, которую резистор может рассеять без повреждения. Измеряется в ваттах. Находится по формуле мощность=ток2 * сопротивление.
У каждого вещества есть свое сопротивление, у некоторых оно очень большое (дерево, пластмасса), у других маленькое (металлы, жидкости). Сопротивление зависит от материала (у золота оно будет меньше чем у алюминия), от длинны проводника (зависимость прямая: чем длиннее тем больше сопротивление) и от площади среза проводника (чем площадь больше тем сопротивление меньше).
Теперь же поговорим об использовании постоянных резисторов в схемах. Обозначение постоянных резистроров на принципиальных схемах:

Стандартное обозначение
0,05 Вт
0,125 Вт
0,25 Вт
0,5 Вт
1 Вт
2 Вт
Если при сборке схемы вы не обнаружили резистор с нужным сопротивлением то можно поставить два и более резистора последовательно (их суммарное сопротивление и будет нужным сопротивлением). Можно поставить параллельно и найти их сопротивление по формуле 1/Rобш = 1/R1 + 1/R2 + 1/R3.
В основном будем использовать углеродистые резисторы. Если вы сломаете (ради интереса, конечно) то увидите слой керамики покрытую тонкой углеродистой пленкой.
Большинство резисторов маркируется цветовыми полосками (обычно их четыре, реже 5), или цифровым обозначением. Например 1R означает, что резистор имеет сопротивление в 1 ом, 1.5K - в 1.5 килоом (1500 ом). Определить сопротивление по цветовым полосам можно с помощью программы "Rezistor"
Существуют так же и переменные резисторы, обладающие способностью изменять своё сопротивление. Их применяют для изменения тока, напряжения и др. (например: изменение громкости и тембра). Чаще всего на принципиальной схеме отображаются так:

Про их типы ниже.
Переменные резисторы бывают:

1) одинарные и сдвоенные
2) одно и многооборотные
3) с выключателем и без него

По характеру изменения сопротивления:

1) Линейные т. е. Пропорционально углу поворота оси (группа А)
2) Обратно логарифмической т. е. сначала понемногу а потом резко увеличивается (группа Б)
3) Логарифмические (группа В)
4) И другие (группы Е, И)

Бывают проволочные и не проволочные (пленочные) переменные резисторы. Проволочные отличаются высокой стабильностью, сравнительно малым уровнем своих шумов и низким ТКС.


Что такое Конденсатор

Конденсатор, в народе именуемый кондером, является средством накопления электроэнергии в электрических цепях. Типичной областью применения являются: сглаживающие фильтры в источниках электропитания; цепи межкаскадовых связей; фильтрация помех.
Электрическая характеристика конденсатора определяется его конструкцией и средствами используемых материалов. Конденсатор состоит из пластин (или обкладок) находящиеся друг перед другом, сделанных из токопроводящего материала, и изолирующего материала (в основном бумага и слюда).
Основной характеристикой является емкость. Измеряют емкость в МикроФарадах (мкФ)(1*10-6 Фарада), НаноФарадах(нФ)(1*10-9 Фарада) и ПикоФарадах (пФ)(1*10-12 Фарада). Если вы разберете конденсатор, то увидите там обкладки. Емкость конденсатора пропорционально увеличивается с площадью обкладок и уменьшается с расстоянием между ними. Еще одной важным параметром конденсатора является рабочее напряжение. Напряжение это не с потолка берется, а характеризуется максимальным напряжением при превышении которого наступает пробой диэлектрика и смерть кондера.
Параллельное и последовательное соединение в схемах.
При параллельном соединении двух конденсаторов С1 и С2:
Емкость находится так: Снужное = С1 + С2
Напряжение: напряжениенужное=напряжение*С1/С2

При последовательном соединении двух конденсаторов С1 и С2:
Емкость находится так: Снужное = С1*С2/ С1 + С2
Напряжение: на наименьшую емкость подается большее напряжение.
Можно конечно написать формулы, но лучше не мудрить и купить нормальный кондер.
Расшифровка обозначений:
Примеры, остальные по аналогии:
9,1пф - 9П1
22пф - 22П
150пф - Н15
1800пф - 1Н8
0.01мкФ - 10Н
0.15мкФ - м15
50мкФ - 50М
6.8мкФ - 6М8
Зарубежные керамические дисковые конденсаторы (темно желтые такие):
(последняя цифра обозначает кол-во нулей на конце)
391 - 390пф132 - 1300пф
473 - 47000пф
1623 - 162000пф - 162нф
154 - 150000пф - 0.15мкф
105 - 1000000пф - 1мкф
.001 - 0.001мкф
.02 - 0.02мкф
Типы конденсаторов:
БМ - бумажный малогабаритный
БМТ - бумажный малогабаритный теплостойкий
КД - керамический дисковый
КЛС - керамический литой секционный
КМ - керамический монолитный
КПК-М - подстроечный керамический малогабаритный
КСО - слюдянной опресованный
КТ - керамический трубчатый
МБГ - металлобумажный герметизированный
МБГО - металлобумажный герметизированный однослойный
МБГТ - металлобумажный герметизированный теплостойкий
МБГЧ - металлобумажный герметизированный однослойный
МБМ - металлобумажный малогабаритный
ПМ - полистироловый малогабаритный
ПО - пленочный открытый
ПСО - пленочный стирофлексный открытый
Обратите внимание, что существуют поляризированные и неполяризированные конденсаторы. При неправильном включении поляризированного вы можете вывести его из строя! Будьте внимательны, и смотрите на обозначения на корпусе кондера. Например дисковые керамические - неполяризированные, а почти все конденсаторы ёмкости более 0,5 мкФ - поляризированные.
Конденсаторы переменной ёмкости.
Применяются чаще всего для регулировки приемных - передающих контуров, и другого. Подстроечные конденсаторы необходимо крутить диэлектрической отверткой, а на переменных выведена ручка (по аналогии с резистрорами).
Обозначения на схеме:
конденсатор постоянной емкости конденсатор постоянной емкости, общее обозначение
постоянной емкости поляризованный постоянной емкости поляризованный
переменной емкости переменной емкости
конденсатор подстроечный подстроечный, общее обозначение   



 

Краткий словарик технических терминов

- Автоматическая Регулировка Усиления - вид отрицательной обратной связи, которая уменьшает коэффициент усиления усилителя при сильном входном сигнале и увеличивает при слабом. Обычно АРУ состоит из амплитудного детектора и фильтра низких частот. Таким образом, на его выходе имеется усреднённое напряжение выходного сигнала, которое обычно управляет транзистором, шунтирующим входную цепь.
- частотные составляющие сложных периодических колебаний, в целое число раз большие основной частоты этих колебаний. Номер гармоники даётся по отношению её частоты к частоте основного сигнала. Т.е., вторая гармоника имеет частоту вдвое больше основной, третья - втрое и т.д. С ростом номера гармоники её амплитуда уменьшается. Субгармоники - частотные составляющие, в целое число раз меньшие основной частоты, появляются в спектре гораздо реже.
- файл технической документации в формате *.pdf, читаемый с помощью Adobe Acrobat Reader
- величина, показывающая максимальное отклонение несущей частоты в положительную/отрицательную сторону при частотной модуляции. Например, несущая имеет частоту 74,250 МГц, а девиация составляет 75 кГц, т.е. 0,075 МГц. Значит, несущая может изменяться в приделах 74,175...74,325 МГц
(в электронике) - устройство, позволяющее выделить из принятой промодулированной несущей модулирующий сигнал см. модуляция. В зависимости от вида модуляции бывают амплитудные, частотные, фазовые и пр. детекторы.
- в общем случае - расстояние в метрах между двумя одинаковыми точками колебания двух соседних периодов. Если проще - расстояние между "гребешками" (максимумами) двух соседних волн (на воде). Это же касается и всех остальных типов волн, какие только есть на Земле и в её окрестностях. Длина волны зависит от частоты следования волн и от скорости распространения волн в данной среде. Чем выше частота и ниже скорость распространения, тем короче волна. Для радиоволн скорость распространения равна скорости света, С = 300 000 000 м/с. Формула следующая:
л=c/f
где л - длина волны в м, С - скорость света в м/с, f - частота колебаний в Гц. Для удобства, лучше пользоваться другой формулой:
л=300/f(МГц)
Длина волны при этом получится, опять же, в метрах.
- в общем случае - преобразователь. В радиотехнике - устройство, позволяющее принимать сигнал одного частотного диапазона на приёмник с другим частотным диапазоном. Например, КВ - диапазон на приёмник ДВ (AM) - диапазона. В цифровой технике - устройство, преобразующее цифровой код из одной кодировки в другую. Например, конвертер двоичного кода в код семисегментного индикатора.
- определение местонахождение обьекта по испускаемому им сигналу, или по сигналу, от него отражённому. В зависимости от вида сигналов, л. бывает звуковая, оптическая, радиолокация и др.
- это монокристалльная полупроводниковая ИМС, как правило, имеющая внутри процессор, программную память (ПЗУ), оперативную память (ОЗУ), интерфейс ввода/вывода и другие периферийные блоки (таймеры, аналоговые компараторы и др.).
Микроконтроллер выполняет программу, которая записана на ПЗУ. Современные продвинутые микроконтроллеры имеют ПЗУ "на борту". Программа для м/к обычно пишется на компьютере, после чего "заливается" в ПЗУ через специальное устройство, например, Byte Blaster, подключаемый к порту LPT (порт принтера).
(в радиотехнике)- изменение какого-либо параметра периодических высокочастотых колебаний под воздействием сигнала низкой частоты. Бывает амплитудная (АМ), частотная (ЧМ, по-буржуйски - FM), фазовая (ФМ, не путать с FM), широтно-импульсная (ШИМ).
- м., при которой частота модулируемого сигнала зависит от амплитуды модулирующего.
- м., при которой ширина импульса модулируемого сигнала зависит от амплитуды модулирующего, при этом частота модулируемого сигнала остаётся постоянной.
- колебания, совершающиеся с определённой периодичностью. Для таких колебаний характерны следующие параметры: частота f, период T. В зависимости от формы, колебания могут быть простыми, гармоническими - т.е. синусоидальными или сложными, т.е., негармоническими, состоящими из импульсов прямоугольной, треугольной, пилообразной формы и пр. Сложные колебания математически раскладываются на сумму гармонических колебаний кратных частот, которые называются гармониками данного сигнала.
- устройство, позволяющее выделять из спектра частоты определённого диапазона путём пропускания частот нужного диапазона и подавления всех прочих.
Фильтр низкой частоты (ФНЧ) - пропускает нижние частоты (от 0 до рассчётной)

Фильтр высокой частоты (ФВЧ) - пропускает верхние частоты (от рассчётной до бесконечности)

Полосовой фильтр - пропускает полосу частот, ограниченную определёнными частотами

Режекторный (заграждающий) фильтр - пропускает все частоты, кроме полосы, ограниченной определёнными частотами
  1. Параметр приёмника, характеризующий его способность реагировать на слабые сигналы на фоне шумов. Обозначается минимальным напряжёнием сигнала, подведенного к антенному входу, при котором соотношение сигнал/шум на выходе приёмника не ниже определённого значения (обычно - 10 или 20 дБ). Иначе говоря, минимальным значением входного сигнала, при котором его ещё можно разобрать. Ч. выражается в мкВ (микровольт). Для телевизоров хорошей считается чувствительность порядка 100 мкВ, для УКВ приёмников - несколько десятков мкВ, для раций, трансиверов и прочей связной техники - могут доходить до значений 0,1 мкВ, но обычно - около 1 мкВ. Чем меньше это значение, тем чувствительнее приёмник.
  2. Параметр датчика, выражающий его способность реагировать на слабые изменения входного параметра (температура, освещённость, вибрация, радиация и пр.).
  1. Оболочка или щит, не пропускающий определённый тип излучения (тепловое, радиочастотное, световое, ультрафиолетовое и т.п.).
  2. Нечто, на которое проецируется картинка =) 



Светодиоды и их применение


Светодиоды, или светоизлучающие диоды (СИД, в английском варианте LED — light emitting diode)— полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Работа основана на физическом явлении возникновения светового излучения при прохождении электрического тока через p-n-переход. Цвет свечения (длина волны максимума спектра излучения) определяется типом используемых полупроводниковых материалов, образующих p-n-переход.
Светодиоды
Достоинства:
1. Светодиоды не имеют никаких стеклянных колб и нитей накаливания, что обеспечивает высокую механическую прочность и надежность(ударная и вибрационная устойчивость)
2. Отсутствие разогрева и высоких напряжений гарантирует высокий уровень электро- и пожаробезопасности
3. Безынерционность делает светодиоды незаменимыми, когда требуется высокое быстродействие
4. Миниатюрность
5. Долгий срок службы (долговечность)
6. Высокий КПД,
7. Относительно низкие напряжения питания и потребляемые токи, низкое энергопотребление
8. Большое количество различных цветов свечения, направленность излучения
9. Регулируемая интенсивность
Недостатки:
1. относительно высокая стоимость. Отношение деньги/люмен для обычной лампы накаливания по сравнению со светодиодами составляет примерно 100 раз
2. малый световой поток от одного элемента
3. деградация параметров светодиодов со временем
4. повышенные требования к питающему источнику
Внешний вид и основные параметры:
У светодиодов есть несколько основных параметров.
1. Тип корпуса
2. Типовой (рабочий) ток
3. Падение (рабочее) напряжения
4. Цвет свечения (длина волны, нм)
5. Угол рассеивания
В основном под типом корпуса понимают диаметр и цвет колбы (линзы). Как известно, светодиод - полупроводниковый прибор, который необходимо запитать током. Так ток, которым следует запитать тот или иной светодиод называется типовым. При этом на светодиоде падает определенное напряжение. Цвет излучения определяется как используемыми полупроводниковыми материалами, так и легирующими примесями. Важнейшими элементами, используемыми в светодиодах, являются: Алюминий (Al), Галлий (Ga), Индий (In), Фосфор (P), вызывающие свечение в диапазоне от красного до жёлтого цвета. Индий (In), Галлий (Ga), Азот (N) используют для получения голубого и зелёного свечений. Кроме того, если к кристаллу, вызывающему голубое (синее) свечение, добавить люминофор, то получим белый цвет светодиода. Угол излучения также определяется производственными характеристиками материалов, а также колбой (линзой) светодиода.
В настоящее время светодиоды нашли применение в самых различных областях: светодиодные фонари, автомобильная светотехника, рекламные вывески, светодиодные панели и индикаторы, бегущие строки и светофоры и т.д.
Схема включения и расчет необходимых параметров:
Так как светодиод является полупроводниковым прибором, то при включении в цепь необходимо соблюдать полярность. Светодиод имеет два вывода, один из которых катод ("минус"), а другой - анод ("плюс").
Подключение счетодиода
Светодиод будет "гореть" только при прямом включении, как показано на рисунке
При обратном включении светодиод "гореть" не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения.
Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Не трудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется "рабочей" зоной, так как именно здесь обеспечивается работа светодиода.
1. Имеется один светодиод, как его подключить правильно в самом простом случае?
Что бы правильно подключить светодиод в самом простом случае необходимо подключить его через токоограничивающий резистор.
Пример 1
Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.
Расчитаем сопротивление токоограничивающего резистора
R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – Uсветодиода
Uпитания = 5 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R =(5-3)/0.02= 100 Ом = 0.1 кОм
Тоесть надо взять резистор сопротивлением 100 Ом
P.S. Вы можете воспользоваться on-line калькулятором расчета резистора для светодиода




2. Как подключить несколько светодиодов?
Несколько светодиодов подключаем последовательно или параллельно, расчитывая необходимые сопротивления.
Пример 1.
Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт.
Производим расчет: 3 светодиода на 3 вольта = 9 вольт , тоесть 15 вольтового источника достаточно для последовательного включения светодиодов
Расчет аналогичен предыдущему примеру
R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 15 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм
Пример 2.
Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт
Производим расчет: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчет токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчет токоограничительных резисторов для каждой ветви.
R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 7 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм
Так как светодиоды в ветвях имеют одинаковые параметры, то сопротивления в ветвях одинаковые.
Пример 3.
Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление
Например имеются 5 разных светодиодов:
1ый красный напряжение 3 вольта 20 мА
2ой зеленый напряжение 2.5 вольта 20 мА
3ий синий напряжение 3 вольта 50 мА
4ый белый напряжение 2.7 вольта 50 мА
5ый желтый напряжение 3.5 вольта 30 мА
Так как разделяем светодиоды по группам по току
1) 1ый и 2ой
2) 3ий и 4ый
3) 5ый
рассчитываем для каждой ветви резисторы
R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – (UсветодиодаY + UсветодиодаX + …)
Uпитания = 7 В
Uсветодиода1 = 3 В
Uсветодиода2 = 2.5 В
Iсветодиода = 20 мА = 0.02 А
R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм
аналогично
R2 = 26 Ом
R3 = 117 Ом
Аналогично можно расположить любое количество светодиодов
ВАЖНОЕ ЗАМЕЧАНИЕ!!!
При подсчете токо ограничительного сопротивления получаются числовые значения которых нет в стандартном ряде сопротивлений, ПОЭТОМУ подбираем резистор с сопротивлением немного большим чем рассчитали.
3. Что будет если имеется напряжение источник с напряжением 3 вольта (и меньше) и светодиод с рабочим напряжением 3 вольта?
Допустимо (НО НЕЖЕЛАТЕЛЬНО) включать светодиод в цепь без токо ограничительного сопротивления. Минусы очевидны – яркость зависит от напряжения питания. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).
4. Можно ли включать несколько светодиодов с одинаковым рабочим напряжением 3 вольта параллельно друг другу к источнику 3 вольта (и менее)? В «китайских» фонариках так ведь и сделано.
Опять, это допустимо в радиолюбительской практике. Минусы такого включения: так как светодиоды имеют определенный разброс по параметрам, то будет наблюдаться следующая картина, одни будут светится ярче, а другие тусклее, что не является эстетичным, что мы и наблюдаем в приведенных выше фонариках. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).
ВАЖНОЕ ЗАМЕЧАНИЕ!!!
Представленные выше схемы не отличаются высокой точность рассчитанных параметров, это связано с тем что при протекании тока через светодиод происходит выделение тепла в нем, что приводит к разогреву p-n перехода, наличие токоограничивающего сопротивления снижает этот эффект, но установление баланса происходит пр и немного повышенном токе через светодиод. Поэтому целесообразно для обеспечения стабильности применять стабилизаторы тока, а не стабилизаторы напряжения. При применении стабилизаторов тока, можно подключать только одну ветвь светодиодов.



Как работает телевизор

Телевизор - это вообще - отвратительная штука. Чем просиживать часами перед "голубым экраном", куда полезнее вести здоровый образ жизни: не спеша, с чашкой кофе - за компьютером…
Тем не менее, вещи, которые я буду рассказывать в этом цикле статей, могут вполне пригодиться в нашей с вами практической деятельности.
Итак, сейчас мы разберемся, как же происходит передача видеосигнала. Рассматривать мы будем родную до боли систему SECAM, потому что в нашей стране ( а именно - Российской Федерации) официально принята именно эта система телевидения. Впрочем - обо всем по порядку.
Как работает телевизор?
Телевизор работает по 24 часа в сутки 7 дней в неделю. Это понятно.
У него есть экран - 1шт и динамик - от 1 до бесконечности, в зависимости от "навороченности" агрегата. Еще у него есть антенна и пульт управления. Но нас сейчас интересует только экран. А переводя с языка домохозяек на язык мудрых котов - кинескоп (электронно-лучевая трубка - ЭЛТ).
Я прекрасно понимаю, что в наш век плазмы и жидкого кристалла, электронно-лучевой кинескоп кажется кому-то пережитком старины. Однако, понять принцип работы телевизора, проще всего именно разбираясь с ЭЛТ.
Электронно-лучевая трубка
Шо це таке. Причем здесь электроны? Причем здесь лучи?
Дело в том, что картинка на экране рисуется при помощи электронного луча. Электронный луч очень похож на световой. Но световой луч состоит из фотонов, а электронный - из электронов, и мы его увидеть не можем. Куча электронов несется с бешеной скоростью по прямой от пункта А - к пункту Б. Так образуется "луч".
Пункт Б - это анод. Он находится прямо на обратной стороне экрана. Также, экран (с обратной стороны) вымазан специальным веществом - люминофором. При столкновении электрона на бешеной скорости с люминофором, последний испускает видимый свет. Чем быстрее летел электрон до столкновения - тем свет будет ярче. То есть, люминофор - это преобразователь "света" электронного луча в свет, видимый для человеческого глаза.
С пунктом Б разобрались. А что же такое пункт "А"? А - это "электронная пушка". Название страшное. Но страшного в ней ничего нет. Она не предназначена для того, чтобы жестоко расстреливать пришельцев с Марса. Но "стрелять" она все же умеет - электронным лучем в экран.
Как это все устроено?
Вообще, ЭЛТ - это такая большая электронная лампа. Как? Вы не знаете что такое лампа? Ну ладно…
Электронные лампы - это такие же усилительные элементы как и любимые всеми нами транзисторы. Но лампы появились намного раньше их кремниевых "коллег", еще в первой половине прошлого века.
Электронная лампа
Лампа - это такой стеклянный баллон, из которого откачан воздух.
В самой простой лампе - 4 вывода: катод, анод и два вывода нити накала. Нить накала нужна для того, чтобы разогреть катод. А разогреть катод нужно для того, чтобы с него полетели электроны. А электроны должны полететь затем, чтоб возник электрический ток через лампу. Для этого обычно на нить накала подается напряжение - 6,3 или 12,6 В (в зависимости от типа лампы)
Кроме того, чтобы полетели электроны - нужно высокое напряжение между катодом и анодом. Оно зависит от расстояния между электродами и от мощности лампы. В обычных радиолампах это напряжение составляет несколько сотен вольт, расстояния от катода до анода в таких лампах не превышают нескольких миллиметров.
В кинескопе расстояние от катода, находящегося в электронной пушке до экрана может превышать несколько десятков сантиметров. Соответственно, и напряжение там нужно намного большее - 15…30 кВ.
Такие зверские напряжения создает специальный повышающий трансформатор. Его еще называют строчный трансформатор, поскольку он работает на строчной частоте. Но, об этом - чуть позже.
При ударении электрона об экран, кроме видимого света, "вышибаются" также и другие излучения. В частности - радиоактивное. Вот почему не рекомендуется смотреть телек ближе 1…2 метров от экрана.
ЭЛТ в разрезе. Вид сбоку
Итак, луч получили. И он так красивенько светит аккурат в центр экрана. Но нам-то надо, чтоб он "чертил" по экрану линии. То есть, нужно заставить его отклоняться от центра. И в этом мам помогут… электромагниты. Дело в том, что электронный луч, в отличие от светового, очень чувствителен к магнитному полю. Поэтому то он и используется в ЭЛТ.
Отклоняющие катушки
Нужно поставить две нары отклоняющих катушек. Одна пара будет отклонять по горизонтали, другая - по вертикали. Умело управляя ими, можно гонять луч по экрану куда угодно.

А куда угодно?
Вот отсюда мы и начинаем нашу повесть о строчках точках и крючочках…
Повесть о Строчках, Точках и Крючочках
Картинка на экране телевизора образуется в результате того, что луч с бешеной скоростью чертит слева-направо сверху-вниз по экрану. Такой метод последовательной прорисовки изображения называется "развертка".
развертка изображения

Поскольку развертка происходит очень быстро - для глаза все точки сливаются в строчки а строчки - в единый кадр.
В системах PAL и SECAM за одну секунду луч успевает пробежать весь экран 50 раз.
В американской системе NTSC - еще больше - аж 60 раз! Вообще говоря, системы PAL и SECAM отличаются лишь в передаче цвета. Все остальное у них - одинаково.
Картинка образуется за счет того, что во время "бега", луч изменяет свою яркость в соответствии с принимаемым видеосигналом. Как происходит управление яркостью?
А очень просто! Дело в том, что кроме рассмотренных электродов - анода и катода, в лампах бывает еще третий электрод - сетка. Сетка - это управляющий электрод. подавая на сетку сравнительно низкое напряжение, можно управлять током, протекающим через лампу. Иными словами, можно управлять интенсивностью потока электронов, "летящих" от катода к аноду.
В ЭЛТ сетка используется для изменения яркости луча.
ЭЛТ с сеткой
Подавая на сетку отрицательное напряжение (относительно катода), можно ослабить интенсивность потока электронов в луче, или вообще закрыть "дорогу" для электронов. Это бывает нужно, например, при перемещении луча от конца одной строки к началу другой.
Теперь поговорим поподробнее именно про принципы развертки.
Для начала, стоит запомнить несколько несложных чисел и терминов:
Растр - это одна "строчка", которую рисует луч на экране.
Поле - это все строчки, которые нарисовал луч за один вертикальный проход.
Кадр - это элементарная единица видео ряда. Каждый кадр состоит из двух полей - четного и нечетного.
Это стоит пояснить: изображение на экране телевизора разворачивается с частотой 50 полей в секунду. Однако, телевизионный стандарт равен 25 кадрам в секунду. Поэтому один кадр при передаче разбивается на два поля - четное и нечетное. В четном поле содержатся только четные строчки кадра (2,4,6,8…), в нечетном - только нечетные. Изображение на экране также "рисуется" через строку. Такая развертка называется "чересстрочная развертка".

Чересстрочная развертка

Бывает еще "прогрессивная развертка" - когда весь кадр развертывается за один вертикальный ход луча. Она используется в компьютерных мониторах.
Итак, теперь сухие числа. Все приведенные числа справедливы для систем PAL и SECAM.
Кол-во полей в секунде - 50
Кол-во строк в кадре - 625
Количество эффективных строк в кадре - 576
Количество эффективных точек в строке - 720
А эти числа выводятся из вышеприведенных:
Кол-во строк в поле - 312,5
Строчная частота - 15625 Гц
Длительность одной строки - 64 мкС (вместе с обратным ходом луча)
Размеры изображения


Комментариев нет:

Отправить комментарий